Techniques for preparation of solid samples with a desired concentration of analyte

 Learn to prepare solid samples with desired concentration of a solute and its uncertainty

Importance

- Preparation of calibration samples
- Preparation of certified reference materials (CRM)
- Production of commercial solid products
- Conducting research experiments

Concentration

 general measurement unit stating the amount of solute present in a known amount of solution

 $Concentration = \frac{amount of solute}{amount of solution}$

• Amount – mass, volume or amount of substance

Units of concentrations of solids

Liquid samples:

- volume %;
- mol/L;
- g/L;
- ppm (w/v); ppb (w/v); ppt (w/v)

Solid samples:

- weight %;
- g/kg;
- ppm (mg/kg or μg/g); ppb (μg/kg); ppt (ng/kg)

Gaseous samples:

- volume %;
- ppm (v/v) milliliters of gaseous compound in 1 m³ of gas mixture;
- ppm (w/v) milligrams of gaseous compound in 1 m^3 of gas mixture
- mg/m³, μg/m³, ng/m³

Solid samples

- Soil and ground
- Ore, minerals
- Metals
- Polymers
- Biological samples (wood, tissues, bones, hair, etc.)

Geological samples

Approaches for preparing solid samples

- Spiking liquid standard into a ground sample + mixing
- Mixing ground solid standard and sample
- Melting or alloying

Solid samples for calibration of the method based on solid-phase microextraction (SPME)

1 – spiking with IS

3 - equilibration

2 - heating

4 - extraction

 How much naphthalene must be introduced into the 20-mL vial with 1.00 g of pure soil to prepare soil with naphthalene concentration 5 ng/g?

$$m_{C10H8} = m_{soil} \times C_{C10H8} = 1 \ g \ \times 5 \ \frac{ng}{g} = 5 \ ng$$

• Q: how could you introduce 5 ng of naphthalene to the vial with soil?

Possible methods

- Add 1 μ L of C₁₀H₈ solution (C = 5 ng/ μ L) in CH₃OH
- Add 2 μ L of C₁₀H₈ solution (C = 2.5 ng/ μ L) in CH₃OH
- Add 5 μ L of C₁₀H₈ solution (C = 1 ng/ μ L) in CH₃OH
- Add 10 μ L of C₁₀H₈ solution (C = 0.5 ng/ μ L) in CH₃OH
- Add 10 mg of soil containing $C_{10}H_8$ at C = 0.5 ng/mg

 Calculate uncertainties of all prepared soil samples if uncertainty of a concentration of a spiked solution is 1%.
Spiking is done using a 10-μL microsyringe (scale 0.1 μL).

Propose the method to prepare soil sample with a concentration of toluene 200 μg/kg.

Propose the method to prepare a sample of soil (m = 100 g) with a concentration of crude oil from Tengiz oil extraction site 500 mg/kg.